

Design & Dev of a GPS antenna with LDS 3D MID's

Partners on the project:

Prof.Dr. Delphine BECHEVET
HEPIA University of Applied sciences western switzerland

Hes-SO GENÈVE

Haute Ecole Spécialisée de Suisse occidentale hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

Amaury VEILLE S2P (Smart Plastic Products)

What about 3D MID's?

MIDs = Molded Interconnected Device MIDs are combination of electronic functions with Plastic parts. It gather 3 main functions: Mechanical function 3D Electronic interconnexions Packaging

MIDs = Molded Interconnected Device

MIDs can be made with many process:

=> Overmolding of metal stamping tracks

=> 3D Printing of tracks

=> LDS

=> IML / IMD (Electronic functionalized overmolded film)

Let's focus on LDS Techno

Where are we coming from?

Initial solution = On shelf Ceramic patch antenna

DESIGN Impact

=> Dimensions = 12x12x5 mm

=> ... how to fit a cube inside a Cylinder!!

	Thickness	Weight
Competitor	14,5 mm	41,2 g
Decathlon initial Patch concept	18,5 mm	56,5 g
Design Impact	+ 4,1 mm	+ 15,3 g
	+ 28%	+ 38 %

Initial solution = On shelf Ceramic GPS patch antenna

GPS performance Impact

=> Component is not taking in account the environment of the

product

Ceramic GPS patch antenna

Ceramic GPS patch antenna + Casing

Surrounding environment impact on GPS Performance

53

Design of LDS GPS Antenna

Ceramic GPS patch antenna + Casing + Strap

Surrounding environment impact on GPS Performance

Ceramic GPS patch antenna + Casing + Strap + Wrist

Surrounding environment impact on GPS Performance

Target of GPS Performance with surrounding environment First Target is to center the frequency 1,585 GHz

How to improve the situation?

3D Design of Plastic carrier & surrounding environment

_

GPS - CST FEA Simulation

=

LDS CUSTOM made
Antenna

Antenna development diagram

3D Design of Plastic carrier

=> Evaluation of the volume available in the product

GPS - FEA Simulation (CST)

- Mechanical Inputs
 - => 3D of all Mechanical components
 - => BOM (with all defined materials)
 - => Resistivity of materials
- Electronics Inputs
 - => 3D of GERBER of the PCBA

Simulation of the antenna

First step = Stand alone + PCBA + Light Meca

Second step = Full component

=> Simulation

=> Prototyping

=> Measurements

=> correlation of results

LDS GPS measurements inside anechoic chamber

ELECTRONICS

LDS GPS performance results compared with OM500

Reduction of size
Thickness of OM 500

			Inickness	Weight	
	Thickness	Weight	Competitor	14,5 mm	41,2 g
Initial form factor	18,5 mm	56,5 g	New GPS watch	15 mm	42,2 g
New GPS watch	15 mm	42,2 g	5	+ 0,5 mm	+ 1,0 g
Optimization	- 20%	- 25 %	Design Impact	+ 3,5%	+ 2,5 %

Thank You

