

Le potentiel des technologies plastroniques pour le transfert d'énergie sans fil inductif omnidirectionnel

<u>S. Kamotesov</u>^{1,2}, P. Lombard², V. Semet², B. Allard², A. Veille¹, M. Moguedet¹, M. Cabrera²

- (1) Smart Plastic Products (S2P), 5 Rue Pierre et Marie CURIE, Belignat BP 21107, 01111 Oyonnax Cedex, France,
- (2) Laboratoire Ampere UMR 5005 CNRS ECL INSA UCB, 20, avenue Albert Einstein 69621 Villeurbanne cedex France

Contact: Michel Cabrera

Laboratoire Ampere

michel.cabrera@insa-lyon.fr

Maël Moguedet

Smart Plastic Products S2P mael.moguedet@s-2p.com

Mecatronic/Plastronic Connection 2018

Sommaire

- 1. Présentation de S2P et du laboratoire Ampère
- 2. Introduction & Motivation
- 3. Principe expérimental
- 4. Montage expérimental
- 5. Résultats
- 6. Conclusion

1. Présentation de S2P et du laboratoire Ampère

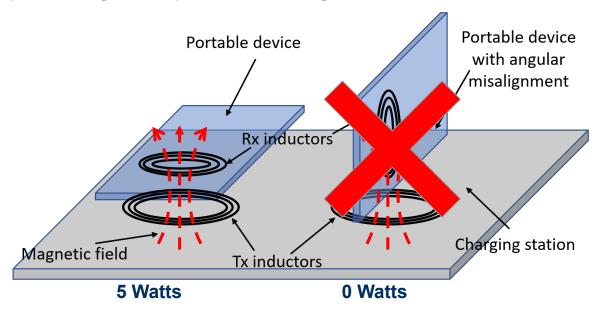
SMART PLASTIC PRODUCTS – S2P

- Société situé à Oyonnax au cœur de la « French plastic-valley »
- Spin off de IPC, le centre technique de l'industrie plastique
- Spécialiste dans la miniaturisation électronique avec la plastronique et la technologie 3D Molded Interconnect Devices technology (3D-MID)
- LDS et 2K-molding
- Marchés: aérospatial, défense, sécurité, médical, industrie
- Fonctions: antennes 3D, capteurs 3D, interconnexion 3D, LED, antiintrusion,...
- Fondée en 2014
- 10 employées

Laboratoire Ampère

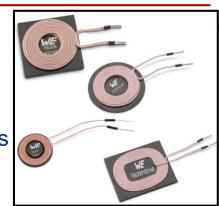
- Laboratoire de recherche situé à Lyon, rattaché au CNRS et 3 grandes écoles (ECL INSA UCBL)
- Matériaux du Génie électrique, Électronique de puissance, Haute-tension, Compatibilité électromagnétique, Modélisation électromagnétique, Systèmes de stockage de l'énergie électrique, Contrôle-commande, Mécatronique, Plastronique 3D, Fluid power, Robotique médicale, Diagnostic et sûreté de fonctionnement, Transferts de gènes et adaptation bactérienne, Ingénierie écologique
- Fondé en 2007
- Plus de 180 Chercheurs (50% Doctorant et postdoc)

2. Introduction & Motivation



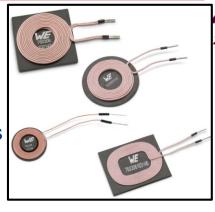
Transfert d'Energie Sans Fil (TESF) - Wireless Power transfer (WPT)

- Transfert d'énergie d'un émetteur vers un récepteur par induction magnétique
- Nécessite 2 inductances (1 émettrice 1 réceptrice)
- Pas de câble = pratique, facile à utiliser, immunisé à l'eau, durée de vie augmenté et chargeur universel (standard Qi)
- Principalement utilisé pour les technologies portables (smartphones, montres connectées, etc.), robots, l'électroménager et la recharge de véhicule
- ➤ Nécessite un bon alignement → Récepteur limité en mouvement
- Le design 3D du récepteur peut corriger ces problèmes d'alignements



2. Introduction & Motivation

Etat actuel du TESF par induction:


- Inductance en standard Qi → Lourd + encombrant
- Mouvements limité à cause du problème d'alignement
- Inductance 3D difficile à fabriquer avec les technologies standards

Idée: Récepteur omnidirectionnel d'énergie inductive de petite taille en technologie 3D-MID

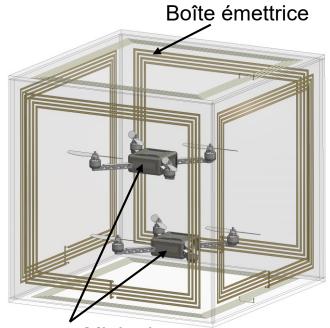
- Liberté de mouvement augmenté avec un design 3D des inductances
- Facile à fabriquer avec la technologie 3D-MID
- Récepteur miniaturisé pour augmenter la liberté mouvement au prix d'un rendement plus faible
- Utilisation: Mini robots, capteurs mobiles (monitoring animalier & humain, machines mobiles), automatisation industriel, applications médicales (implants, cœur artificiel)...
- Nécessite des inductances de forme 3D ayant un facteur de qualité élevé

2. Introduction & Motivation

Travaux précédents sur les inductances en 3D-MID:

- Capteur de proximité inductif 3D
- Fabriqué avec le procédé habituel 3D-MID : LDS + cuivre chimique + électrodéposition de cuivre + étain chimique à froid
- 100 µm de cuivre avec une conductivité proche du cuivre brut
- Inductances 3D avec facteur de qualité élevé Q>100 dans la plage fréquentielle de 1 MHz à 100 MHz

Kamotesov Sergkei, and al. "Modelization and characterization of 2D and 3D mid inductors for multidirectional inductive proximity sensing." *Molded Interconnect Devices (MID)*, 2016 12th International Congress. IEEE, 2016.

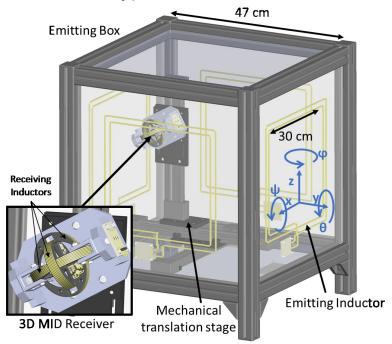

3. Principe expérimental

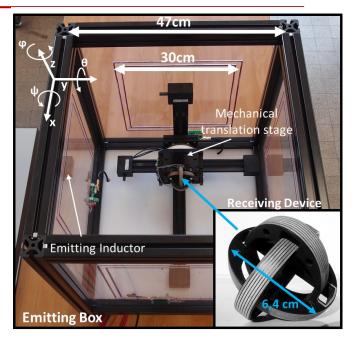
Ampère

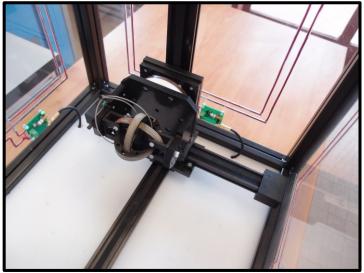
Cas d'étude:

- Boîte émettrice 3D avec des inductances résonante sur chaque côté
- Récepteurs 3D miniaturisés avec des inductances 3D-MID omnidirectionnels
- Utilisation directe de la puissance sans élément de stockage
- Insensible à la rotation et au désalignement
- Induction résonante à 6,78 MHz

Questions: Performance? Distance de transmission? Dépendance au désalignement?

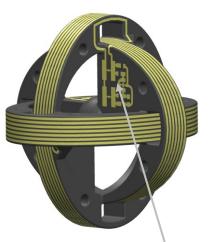

Récepteurs: Mini robots avec des inductances en 3D-MID




4. Montage expérimental

Boîte émettrice:

- Boite de taille 0,5×0,5×0,5 m³
- Translation XYZθΨ et châssis entièrement polymère
- 4 inductances émettrices (L=4,4µH et Q=120)
 filaires de 30 cm sur chaque côté de la boîte
- 4 onduleurs type class D travaillant à 6,78 MHz

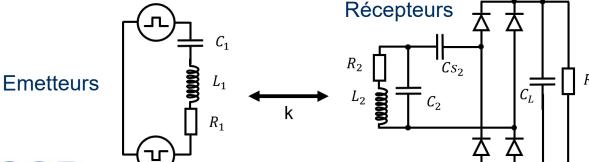


4. Montage expérimental

Récepteurs 3D-MID:

- 3 inductances (L=5,7 µH, Q=130) résonantes et elliptiques de 6,4cm×5,2cm sur chaque côté
- Procédé de fabrication 3D-MID + électrodéposition de cuivre jusqu'à 100µm
- Capacité d'accordement pour les 6,78 MHz, circuit de redressement and charge de 68 Ω

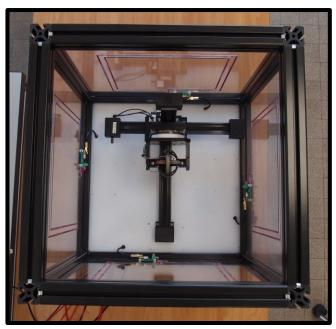
4×TX

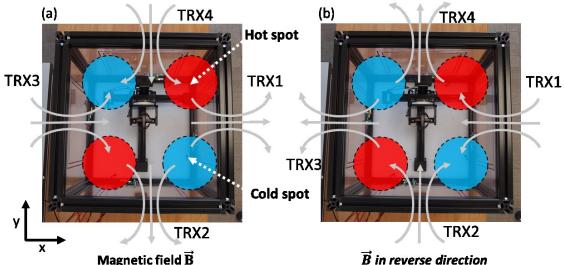


Capacités et circuit de redressement

3×RX

Inductances réceptrice

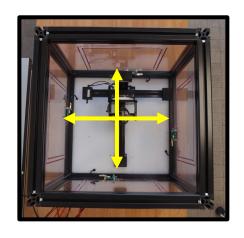


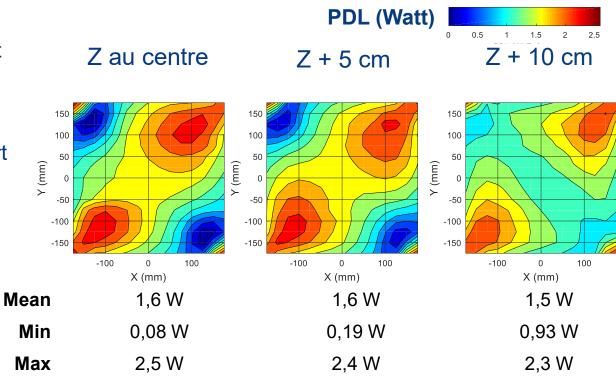

4. Montage expérimental

Orientation du champ magnétique:

- Champs magnétiques couplées par 2
- Champs magnétiques constructifs → 2 points chauds
- Champs magnétiques opposés → 2 points froids

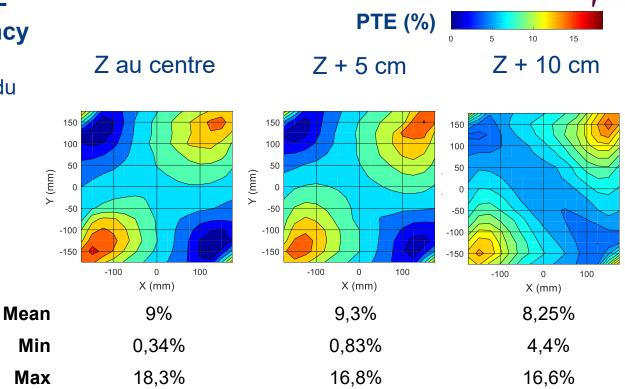
Vu du dessus de la boîte


Vu du dessus de l'orientation du champ magnétique pendant la première (a) et seconde (b) demi-période du sinus


5. Résultats

Mesure de la Power Delivery to Load (PDL):

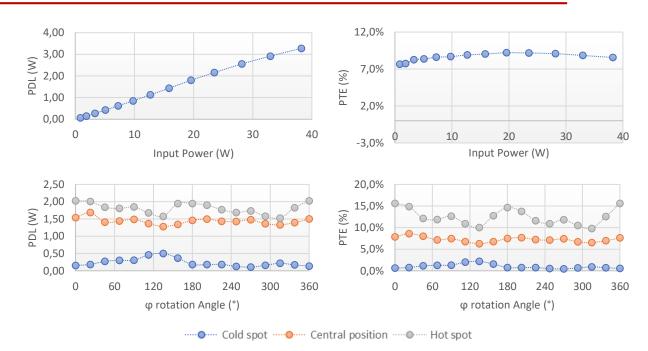
- PDL après redressement mesuré à différentes position verticales
- Quasiment 1,6 Watt de puissance sur la plus part des position
- Points chauds et froids

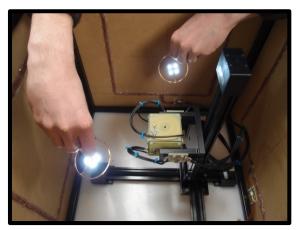


5. Résultats

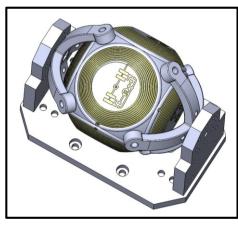
Mesure du rendement -Power Transfer Efficency (PTE):

- Rendement faible attendu
- PTE de la source à la charge d'environ 9%
- Points chauds et points froids

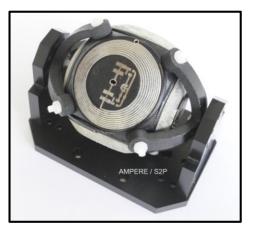

5. Résultats


- La puissance en sortie peut atteindre plus de 3W (limité par des échauffements)
- Le récepteur est insensible à la rotation

 Fonctionne avec plus d'un récepteur



6. Perspectives avec la 3D-MID



D'autres récepteurs en 3D-MID sont étudiés

- Sphère avec 6 inductances de 5,3 µH avec Q=103
- Inductances fabriquées en 3D-MID par procédé LDS + életrodéposition de 100µm de cuivre
- Pas encore testé
- Simulation: 4 Watt de puissance en sortie avec un rendement moyen de 15%

Réalisation

6. Conclusion

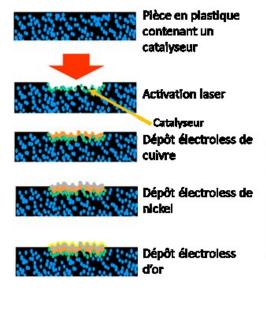
- Association des technologies 3D-MID + WPT
- Résultats préliminaires: liberté de mouvement augmenté, omnidirectionalité du récepteur, 3 Watts à 9%
- Beaucoup d'améliorations sont possibles (uniformité, gestion de la puissance envoyée, récepteurs multiples,...)
- Le design 3D offre beaucoup de possibilité pour la WPT
- La 3D-MID et les technologies plastroniques peuvent permettre de fabriquer des inductances 3D avec des formes compliquées.

Publications:

- Kamotesov Sergkei, and al. "Omnidirectional inductive wireless charging of a 3D receiver cube inside a box." Wireless Power Transfer Conference (WPTC), 2018 IEEE.
- Kamotesov Sergkei, and al. "The Potential of 3D-MID Technology for Omnidirectional Inductive Wireless Power Transfer." Molded Interconnect Devices (MID), 2018 13th International Congress. IEEE, 2018.

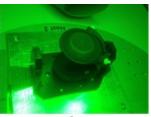
Merci pour votre attention

Questions?


Remerciements

- La Société S2P et le laboratoire Ampère
- Mes encadrants à Ampère: M. Cabrera, V. Semet et P. Lombard
- Mes encadrants à S2P: M. Moguedet, A. Veille
- B. Allard et C. Martin du laboratoire Ampère

Procédé LDS



Pièce fabriqué par frittage de poudre

Dépôt électroless de culvre

Peint avec du ProtoPaint et avant activation laser

Electrodéposition de culvre

Pièce après activation

Plèce après étamage à froid